Step of Proof: complete_nat_ind
9,38
postcript
pdf
Inference at
*
1
I
of proof for Lemma
complete
nat
ind
:
1.
P
:
{k}
2.
i
:
. (
j
:
i
.
P
(
j
))
P
(
i
)
3.
i
:
P
(
i
)
latex
by
InteriorProof
((NCompInd 3)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 2:n
CollapseTHENA ((Au
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
4.
i1
:
i
.
P
(
i1
)
C1:
P
(
i
)
C
.
Definitions
t
T
,
False
,
A
,
A
B
,
i
j
,
P
Q
,
x
:
A
.
B
(
x
)
,
,
,
P
Q
,
i
j
<
k
,
{
i
..
j
}
Lemmas
nat
properties
,
int
seg
wf
,
le
wf
,
ge
wf
,
nat
wf
origin